

Parameter Efficient Fine Tuning (PEFT) of LLMs

DL4DS – Spring 2024

DS598 B1 Gardos – Understanding Deep Learning, Other Content Cited

Last time...

We looked at ways of improving LLM performance via prompting strategies such as

- Chain of Thought, Tree of Thought and through
- Retrieval augmentation

Today...

We look at ways to improve model performance through *finetuning* the model

- full model fine tuning
- parameter efficient fine tuning

Topics

- Full finetuning
- Low rank adaptation
- Prompt tuning

Topics

• Full finetuning

- Low rank adaptation
- Prompt tuning

Model Training in the Transformer Era

Large-scale pretraining on generic internet-scale data Fine-tuning to downstream tasks with smaller dataset

ChatGPT

Model Finetuning

- Large foundation models are pre-trained on general tasks
- Might not do as well on specialized tasks
 - Try prompt engineering and retrieval augmentation first
- Good news: can fine tune model with much smaller dataset to adapt to downstream tasks
- Fine tuned model is same size as original.
 - Resource Intensive: Can take very large memory and compute resources to fine tune
 - Storage Demands: If you have *n* downstream tasks, you will have *n* copies of your large model.

Full Finetuning Example

Text classification performance on the <u>Stanford Natural Language Inference (SNLI) Corpus.</u> Ordered pairs of sentences are classified by their logical relationship: either contradicted, entailed (implied), or neutral. Default fine-tuning parameters were used when not otherwise specified.

https://learn.microsoft.com/en-us/ai/playbook/technology-guidance/generative-ai/working-with-llms/fine-tuning_

😔 HuggingFace – Fine-tune Pretrained Model Tutorials

- Finetune for Sentiment Analysis Example (broken??)
 - https://huggingface.co/docs/transformers/training
 - Finetune <u>bert-base-cased</u> (109M params, FP32, 436MB) on Yelp review dataset (650K reviews, 323 MB)
- Finetune for text classification example
 - <u>https://github.com/huggingface/notebooks/blob/main/examples/text_classification.ipynb</u>
 - preprocess the data and fine-tune a pretrained model on any GLUE task
- Finetune for question answering
 - <u>https://github.com/huggingface/notebooks/blob/main/examples/question_a_nswering.ipynb</u>
 - preprocess the data and fine-tune a pretrained model on SQUAD

Model Finetuning Drawbacks

- Fine tuned model is same size as original.
 - Resource Intensive: Can take very large memory and compute resources to fine tune
 - Storage Demands: If you have n downstream tasks, you will have n copies of your large model

Model Finetuning Drawbacks

- Fine tuned model is same size as original.
 - Resource Intensive: Can take very large memory and compute resources to fine tune
 - Storage Demands: If you have n downstream tasks, you will have n copies of your large model

Solution is to update aspects of the model, rather than entire model

- Low rank adaptation of the weight updates -- LoRA
- Train and concatenated soft prompts -- Prompt Tuning

Topics

- Full finetuning
- Low rank adaptation
- Prompt tuning

Low Rank Adaptation

- Deploying independent instances of downstream fine-tuned models can be prohibitive (e.g. GPT3, 175B params, 700GB@fp32)
- Instead, freeze the pre-trained model and inject trainable rank decomposition matrices into each layer
- Reduce trainable parameters by 10,000x!!
- On-par or better than finetuning on RoBERTa, DeBERTa, GPT-2 and GPT-3

Low Rank Adaptation

- Aghajanyan et al show that pretrained language models have a low "intrinsic dimension"
- Updates to weight matrices likely have a low "intrinsic rank" during training
- Found that even very low rank (e.g. r=1 or2) with GPT-3 175B is effective where full rank (embedding dimension) is 12,288

E. J. Hu *et al.*, "LoRA: Low-Rank Adaptation of Large Language Models." arXiv, Oct. 16, 2021. <u>http://arxiv.org/abs/2106.09685</u> A. Aghajanyan et al., "Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning". arXiv:2012.13255 [cs], December 2020. URL <u>http://arxiv.org/abs/2012.13255.</u>

Reminder: Rank of a Matrix

- The number of linearly independent rows or columns of a matrix
- Determines the dimension of the vector space spanned by the column vectors
- A measure of "dimensionality"

LoRA: Method

Say you have pre-trained weights,

 $W_0 \in \mathbb{R}^{d \times k}$

Represent update with a low rank decomposition

 $W_0 + \Delta W = W_0 + BA ,$

where $B \in \mathbb{R}^{d \times r}$, $A \in \mathbb{R}^{r \times k}$ and the rank $r \ll \min(d, k)$, is much less than the full rank.

For updates,

 $h = (W_0 + \Delta W)x = W_0x + \Delta Wx = W_0x + BAx$

Initialize A to random gaussian and B to zero

LoRA: Method

LoRA can be viewed as a generalization of full finetuning, since using full rank = full finetuning

Updates:

 $h = (W_0 + \Delta W)x = W_0x + \Delta Wx = W_0x + BAx$

Generally only applied to W_q and W_v matrices.

E. J. Hu et al., "LoRA: Low-Rank Adaptation of Large Language Models." arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

LoRA Results / Comparisons

Model & Method	# Trainable									
	Parameters	MNLI	SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
RoB _{base} (FT)*	125.0M	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
RoB _{base} (BitFit)*	0.1M	84.7	93.7	92.7	62.0	91.8	84.0	81.5	90.8	85.2
RoB _{base} (Adpt ^D)*	0.3M	$87.1_{\pm.0}$	$94.2_{\pm.1}$	$88.5_{\pm1.1}$	$60.8_{\pm.4}$	$93.1_{\pm.1}$	$90.2_{\pm.0}$	$71.5_{\pm 2.7}$	$89.7_{\pm.3}$	84.4
RoB _{base} (Adpt ^D)*	0.9M	$87.3_{\pm.1}$	$94.7_{\pm.3}$	$88.4_{\pm.1}$	$62.6_{\pm.9}$	$93.0_{\pm.2}$	$90.6_{\pm.0}$	$75.9_{\pm 2.2}$	$90.3_{\pm.1}$	85.4
RoB _{base} (LoRA)	0.3M	$87.5_{\pm.3}$	$95.1_{\pm.2}$	$89.7_{\pm.7}$	$63.4_{\pm 1.2}$	$93.3_{\pm.3}$	$90.8_{\pm.1}$	$86.6_{\pm.7}$	$91.5_{\pm.2}$	87.2
RoB _{large} (FT)*	355.0M	90.2	96.4	90.9	68.0	94.7	92.2	86.6	92.4	88.9
RoB _{large} (LoRA)	0.8M	$90.6_{\pm.2}$	$96.2_{\pm.5}$	$\textbf{90.9}_{\pm 1.2}$	$68.2_{\pm 1.9}$	$94.9_{\pm.3}$	$91.6_{\pm.1}$	$87.4_{\pm 2.5}$	$92.6_{\pm.2}$	89.0
RoB _{large} (Adpt ^P)†	3.0M	$90.2_{\pm.3}$	96.1±.3	$90.2_{\pm.7}$	$68.3_{\pm 1.0}$	$94.8_{\pm.2}$	$91.9_{\pm.1}$	$83.8_{\pm 2.9}$	92.1 _{±.7}	88.4
RoB _{large} (Adpt ^P) [†]	0.8M	$90.5_{\pm.3}$	$96.6_{\pm .2}$	$89.7_{\pm 1.2}$	$67.8_{\pm 2.5}$	$94.8_{\pm.3}$	$91.7_{\pm.2}$	$80.1_{\pm 2.9}$	$91.9_{\pm.4}$	87.9
RoB _{large} (Adpt ^H)†	6.0M	$89.9_{\pm.5}$	$96.2_{\pm.3}$	$88.7_{\pm 2.9}$	$66.5_{\pm 4.4}$	$94.7_{\pm.2}$	$92.1_{\pm.1}$	$83.4_{\pm1.1}$	$91.0_{\pm 1.7}$	87.8
RoB _{large} (Adpt ^H)†	0.8M	$90.3_{\pm.3}$	$96.3_{\pm.5}$	$87.7_{\pm 1.7}$	$66.3_{\pm 2.0}$	$94.7_{\pm.2}$	$91.5_{\pm.1}$	$72.9_{\pm 2.9}$	$91.5_{\pm.5}$	86.4
RoB_{large} (LoRA) [†]	0.8M	$\textbf{90.6}_{\pm.2}$	$96.2_{\pm.5}$	$\textbf{90.2}_{\pm 1.0}$	$68.2{\scriptstyle\pm1.9}$	$\textbf{94.8}_{\pm.3}$	$91.6_{\pm.2}$	$85.2_{\pm 1.1}$	$92.3_{\pm.5}$	88.6
DeB _{XXL} (FT)*	1500.0M	91.8	97.2	92.0	72.0	96.0	92.7	93.9	92.9	91.1
DeB _{XXL} (LoRA)	4.7M	$91.9_{\pm.2}$	$96.9_{\pm.2}$	$92.6_{\pm.6}$	$72.4_{\pm 1.1}$	$\textbf{96.0}_{\pm.1}$	$92.9_{\pm.1}$	$\textbf{94.9}_{\pm.4}$	$93.0_{\pm.2}$	91.3

GLUE benchmark – measure across 9 language tasks

BitFit - train only the bias vectors

Adpt – Inserts adaptation layer between self-attention and MLP module

E. J. Hu *et al.*, "LoRA: Low-Rank Adaptation of Large Language Models." arXiv, Oct. 16, 2021. <u>http://arxiv.org/abs/2106.09685</u> † indicates runs configured in a setup similar to Houlsby et al. (2019) for a fair comparison.

LoRA Results / Comparisons

Model & Method	# Trainable		E2H	E NLG Cha	allenge	
	Parameters	BLEU	NIST	MET	ROUGE-L	CIDEr
GPT-2 M (FT)*	354.92M	68.2	8.62	46.2	71.0	2.47
GPT-2 M (Adapter ^L)*	0.37M	66.3	8.41	45.0	69.8	2.40
GPT-2 M (Adapter ^L)*	11.09M	68.9	8.71	46.1	71.3	2.47
GPT-2 M (Adapter ^H)	11.09M	$67.3_{\pm.6}$	$8.50_{\pm.07}$	$46.0_{\pm .2}$	$70.7_{\pm .2}$	$2.44_{\pm.01}$
GPT-2 M (FT ^{Top2})*	25.19M	68.1	8.59	46.0	70.8	2.41
GPT-2 M (PreLayer)*	0.35M	69.7	8.81	46.1	71.4	2.49
GPT-2 M (LoRA)	0.35M	$70.4_{\pm.1}$	$8.85_{\pm.02}$	$46.8_{\pm.2}$	$71.8_{\pm.1}$	$2.53_{\pm.02}$
GPT-2 L (FT)*	774.03M	68.5	8.78	46.0	69.9	2.45
GPT-2 L (Adapter ^L)	0.88M	$69.1_{\pm.1}$	$8.68_{\pm.03}$	$46.3_{\pm.0}$	$71.4_{\pm.2}$	$\textbf{2.49}_{\pm.0}$
GPT-2 L (Adapter ^L)	23.00M	$68.9_{\pm.3}$	$8.70_{\pm.04}$	$46.1_{\pm.1}$	$71.3_{\pm.2}$	$2.45_{\pm.02}$
GPT-2 L (PreLayer)*	0.77M	70.3	8.85	46.2	71.7	2.47
GPT-2 L (LoRA)	0.77M	$70.4_{\pm.1}$	$8.89_{\pm.02}$	$46.8_{\pm.2}$	$72.0_{\pm.2}$	$2.47_{\pm.02}$

GPT-2 medium (M) and large (L) with different adaptation methods on the E2E NLG Challenge. For all metrics, higher is better. LoRA outperforms several baselines with comparable or fewer trainable parameters. Confidence intervals are shown for experiments we ran. * indicates numbers published in prior works.

E. J. Hu et al., "LoRA: Low-Rank Adaptation of Large Language Models." arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

Understanding the Low-Rank Updates

- 1. Given a parameter budget constraint, which subset of weight matrices in a pre-trained Transformer should we adapt to maximize downstream performance?
- 2. Is the "optimal" adaptation matrix ΔW really rank-deficient? If so, what is a good rank to use in practice?

E. J. Hu et al., "LoRA: Low-Rank Adaptation of Large Language Models." arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

1) Which weight matrices to target?

	# of Trainable Parameters = 18M						
Weight Type	$ W_q $	W_k	W_v	W_o	W_q, W_k	W_q, W_v	W_q, W_k, W_v, W_o
Rank r	8	8	8	8	4	4	2
WikiSQL (±0.5%)	70.4	70.0	73.0	73.2	71.4	73.7	73.7
MultiNLI ($\pm 0.1\%$)	91.0	90.8	91.0	91.3	91.3	91.3	91.7
						$\overline{}$	

Validation accuracy on WikiSQL and MultiNLI after applying LoRA to different types of attention weights in GPT-3, given the same number of trainable parameters. Adapting both Wq and Wv gives the best performance overall. We find the standard deviation across random seeds to be consistent for a given dataset, which we report in the first column.

Rank of 16 on 2 matrices or even 4 on 4 matrices is sufficient.

E. J. Hu et al., "LoRA: Low-Rank Adaptation of Large Language Models." arXiv, Oct. 16, 2021. <u>http://arxiv.org/abs/2106.09685</u>

2) What is the optimal rank?

	Weight Type	r = 1	r = 2	r = 4	r = 8	r = 64
WikiSOI $(\pm 0.5\%)$	W_q	68.8	69.6	70.5	70.4	70.0
WIRDQL(±0.5%)	W_q, W_v	73.4	73.3	73.7	73.8	73.5
	W_q, W_k, W_v, W_o	74.1	73.7	74.0	74.0	73.9
	W_q	90.7	90.9	91.1	90.7	90.7
MultiNLI ($\pm 0.1\%$)	W_q, W_v	91.3	91.4	91.3	91.6	91.4
	W_q, W_k, W_v, W_o	91.2	91.7	91.7	91.5	91.4

"Validation accuracy on WikiSQL and MultiNLI with different rank r. To our surprise, a rank as small as one suffices for adapting both Wq and Wv on these datasets while training Wq alone needs a larger r."

E. J. Hu et al., "LoRA: Low-Rank Adaptation of Large Language Models." arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

An alternative to adapting model updates is to train a set of soft prompt tokens

Topics

- Full finetuning
- Low rank adaptation
- Prompt tuning

Prompt Tuning

- Prompt engineering can improve LLM performance but is very brittle
 - small change in words can have drastic impact on performance
 - show example
- Turns out you can learn a set of "soft tokens" that are prepended to the actual prompt which improves LLM performance
- Makes it much more robust to small changes

Prompt Tuning

• P-Tuning: employ trainable continuous prompt embeddings in concatenation with discrete prompts

Figure 1: Average scores on 7 dev datasets of Super-GLUE using P-Tuning.

Prompt	P@1 w/o PT	P@1 w/ PT
[X] is located in [Y]. (original)	31.3	57.8
[X] is located in which country or state? [Y]	. 19.8	57.8
[X] is located in which country? [Y].	31.4	58.1
[X] is located in which country? In [Y].	51.1	58.1

Instability of discrete prompts.

Results are precision@1 on LAMA-TREx P17 with BERTbase-cased.

Prompt Tuning

- employs trainable continuous prompt embeddings in concatenation with discrete prompts given a discrete prompt as the input,
- P-Tuning concatenates continuous prompt embeddings with the discrete prompt tokens and feeds them as the input to the language model.
- The continuous prompts are updated by backpropagation to optimize the task objective.

Incorporate a certain degree of learnability into the input, which may learn to offset the effects of minor changes in discrete prompts to improve training stability

p-tuning methodology

- Let [D_i] be a discrete prompt token.
- Each prompt can be described as a template

 $T = \{ [D_{0:i}], x, [D_{(i+1):j}], y, [D_{(j+1):k}] \}$

which could organize the labeled data (including the inputs x and the label y) into a sequence of text tokens, such that the task could be reformulated as filling in the blanks of the input text.

- "The capital of [INPUT] is [LABEL]."
 - labeled data "(Britain, London)"
- Both discrete prompts and discrete data are together mapped into input embeddings:

 $\{e(D_0) \dots e(D_i), e(x_0), \dots, e(x_n), \dots, e(D_k)\}$

through the pretrained embedding layer, where $e \in \mathbb{R}^{|\mathcal{V}| \times d}$.

• we propose P-Tuning that uses continuous prompt embeddings

p-tuning methodology

- Proposes continuous prompt embeddings
- Let $[P_i]$ be the i^{th} continuous prompt embedding.
- The prompt template for P-Tuning is as follows:
 - $T = \{ [P_{0:i}], x, [P_{(i+1):j}], y, [P_{(j+1):k}] \}$
- P-Tuning leverages an extra embedding function $f: [P_i] \rightarrow h_i$ to map the template to $\{h_0, \dots, h_i, e(x), h_{i+1}, \dots, h_i, e(y), h_{i+1}, \dots, h_k\}$
- Finally, we update the embeddings $\{P_i\}_{i=1}^k$ to optimize a task loss function.

X. Liu et al., "GPT Understands, Too." arXiv, Oct. 25, 2023. http://arxiv.org/abs/2103.10385

Discrete Prompt Searching vs P-Tuning

Prompt type	Model	P@1	Model	MP	P-tuning
Original (MP)	BERT-base BERT-large E-BERT	31.1 32.3 36.2	BERT-base (109M) -AutoPrompt (Shin et al., 2020) BERT-large (335M)	31.7 - 33.5	52.3 (+20.6) 45.2 54.6 (+21.1)
Discrete	LPAQA (BERT-base) LPAQA (BERT-large) AutoPrompt (BERT-base)	34.1 39.4 43.3	RoBERTa-base (125M) -AutoPrompt (Shin et al., 2020) RoBERTa-large (355M)	18.4 - 22.1	49.3 (+30.9) 40.0 53.5 (+31.4)
P-tuning	BERT-base BERT-large	48.3 50.6	GPT2-medium (345M) GPT2-xl (1.5B) MegatronLM (11B)	20.3 22.8 23.1	46.5 (+26.2) 54.4 (+31.6) 64.2 (+41.1)

Table 3: Knowledge probing Precision@1 on LAMA-34k (left) and LAMA-29k (right). P-tuning outperforms all the discrete prompt searching baselines. (MP: Manual prompt; PT: P-tuning).

X. Liu et al., "GPT Understands, Too." arXiv, Oct. 25, 2023. http://arxiv.org/abs/2103.10385

Additional References

- X. Liu *et al.*, "P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks." arXiv, Mar. 20, 2022. <u>http://arxiv.org/abs/2110.07602</u>
- B. Lester, R. Al-Rfou, and N. Constant, "The Power of Scale for Parameter-Efficient Prompt Tuning." arXiv, Sep. 02, 2021. <u>http://arxiv.org/abs/2104.08691</u>

HuggingFace PEFT

- Blog: See <u>PEFT: Parameter-Efficient Fine-Tuning of Billion-Scale Models</u> on Low-Resource Hardware
- Library: https://github.com/huggingface/peft

Prepare a model for training with PEFT method

from transformers import AutoModelForSeq2SeqLM from peft import get_peft_config, get_peft_model, LoraConfig, TaskType model_name_or_path = "bigscience/mt0-large" tokenizer_name_or_path = "bigscience/mt0-large"

peft_config = LoraConfig(task_type=TaskType.SE0_2_SE0_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1

model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path) model = get peft model(model, peft config) model.print_trainable_parameters() "trainable params: 2359296 || all params: 1231940608 || trainable%: 0.19151053100118282"

Load a PEFT model for inference

from peft import AutoPeftModelForCausalLM ٢ from transformers import AutoTokenizer import torch Get the PEFT model model = AutoPeftModelForCausalLM.from_pretrained("ybelkada/opt-350m-lora").to("cuda") tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m") model.eval() inputs = tokenizer("Preheat the oven to 350 degrees and place the cookie dough", return_tensor outputs = model.generate(input_ids=inputs["input_ids"].to("cuda"), max_new_tokens=50) print(tokenizer.batch_decode(outputs, skip_special_tokens=True)[0]) "Preheat the oven to 350 degrees and place the cookie dough in the center of the oven. In a la

https://github.com/huggingface/peft?tab=readme-ov-file#quickstart

Create PEFT config

Get the PEFT model based on config

Use it like a regular model

High performance on consumer hardware

Consider the memory requirements for training the following models on the <u>ought/raft/twitter_complaints</u> dataset with an A100 80GB GPU with more than 64GB of CPU RAM.

Model	Full Finetuning	PEFT-LoRA PyTorch	PEFT-LoRA DeepSpeed with CPU Offloading
bigscience/TO_3B (3B params)	47.14GB GPU / 2.96GB CPU	14.4GB GPU / 2.96GB CPU	9.8GB GPU / 17.8GB CPU
bigscience/mt0-xxl (12B params)	OOM GPU	56GB GPU / 3GB CPU	22GB GPU / 52GB CPU
bigscience/bloomz-7b1 (7B params)	OOM GPU	32GB GPU / 3.8GB CPU	18.1GB GPU / 35GB CPU

Submission Name	Accuracy
Human baseline (crowdsourced)	0.897
Flan-T5 (fully finetuned)	0.892
lora-t0-3b (LoRA)	0.863

https://github.com/huggingface/peft?tab=readme-ov-file#high-performance-on-consumer-hardware

Diffusers

Model	Full Finetuning	PEFT-LoRA	PEFT-LoRA with Gradient Checkpointing
CompVis/stable-diffusion-v1-4	27.5GB GPU / 3.97GB CPU	15.5GB GPU / 3.84GB CPU	8.12GB GPU / 3.77GB CPU

Take a look at the <u>examples/lora_dreambooth/train_dreambooth.py</u> training script to try training your own Stable Diffusion model with LoRA, and play around with the <u>smangrul/peft-lora-sd-dreambooth</u> Space which is running on a T4 instance. Learn more about the PEFT integration in Diffusers in this <u>tutorial</u>.

https://github.com/huggingface/peft?tab=readme-ov-file#diffusers

Next Time

- back to book sequence on
 - unsupervised learning
 - GANs
 - VAEs
 - Diffusion Models
 - graph neural nets
 - etc.

Feedback

