
Parameter Efficient Fine Tuning
(PEFT) of LLMs

DL4DS – Spring 2024

DS598 B1 Gardos – Understanding Deep Learning, Other Content Cited 1

https://udlbook.github.io/udlbook/

Last time…

We looked at ways of improving LLM performance via prompting
strategies such as
• Chain of Thought, Tree of Thought
and through
• Retrieval augmentation

2

Today…

We look at ways to improve model performance through finetuning the
model

• full model fine tuning

• parameter efficient fine tuning

3

Topics

• Full finetuning
• Low rank adaptation
• Prompt tuning

4

Topics

• Full finetuning
• Low rank adaptation
• Prompt tuning

5

Model Training in the Transformer Era

6

Large-scale pretraining
on generic internet-scale
data

Fine-tuning to
downstream tasks with
smaller dataset

ChatGPT

Model Finetuning
• Large foundation models are pre-trained on general tasks

• Might not do as well on specialized tasks
• Try prompt engineering and retrieval augmentation first

• Good news: can fine tune model with much smaller dataset to adapt
to downstream tasks

• Fine tuned model is same size as original.
• Resource Intensive: Can take very large memory and compute resources to

fine tune
• Storage Demands: If you have n downstream tasks, you will have n copies of

your large model.

7

Full Finetuning Example

8

Text classification performance on the Stanford Natural Language Inference (SNLI) Corpus.
Ordered pairs of sentences are classified by their logical relationship: either contradicted,
entailed (implied), or neutral. Default fine-tuning parameters were used when not otherwise
specified.

https://learn.microsoft.com/en-us/ai/playbook/technology-guidance/generative-ai/working-with-llms/fine-tuning

https://nlp.stanford.edu/projects/snli/
https://learn.microsoft.com/en-us/ai/playbook/technology-guidance/generative-ai/working-with-llms/fine-tuning

🤗 HuggingFace – Fine-tune Pretrained Model Tutorials

• Finetune for Sentiment Analysis Example (broken??)
• https://huggingface.co/docs/transformers/training
• Finetune bert-base-cased (109M params, FP32, 436MB) on Yelp review

dataset (650K reviews, 323 MB)
• Finetune for text classification example

• https://github.com/huggingface/notebooks/blob/main/examples/text_classifi
cation.ipynb

• preprocess the data and fine-tune a pretrained model on any GLUE task
• Finetune for question answering

• https://github.com/huggingface/notebooks/blob/main/examples/question_a
nswering.ipynb

• preprocess the data and fine-tune a pretrained model on SQUAD

9

https://huggingface.co/docs/transformers/training
https://huggingface.co/google-bert/bert-base-cased
https://github.com/huggingface/notebooks/blob/main/examples/text_classification.ipynb
https://github.com/huggingface/notebooks/blob/main/examples/text_classification.ipynb
https://github.com/huggingface/notebooks/blob/main/examples/question_answering.ipynb
https://github.com/huggingface/notebooks/blob/main/examples/question_answering.ipynb

Model Finetuning Drawbacks
• Fine tuned model is same size as original.

• Resource Intensive: Can take very large memory and compute resources to
fine tune

• Storage Demands: If you have n downstream tasks, you will have n copies of
your large model

10

Model Finetuning Drawbacks
• Fine tuned model is same size as original.

• Resource Intensive: Can take very large memory and compute resources to
fine tune

• Storage Demands: If you have n downstream tasks, you will have n copies of
your large model

Solution is to update aspects of the model, rather than entire model
• Low rank adaptation of the weight updates -- LoRA
• Train and concatenated soft prompts -- Prompt Tuning

11

Topics

• Full finetuning
• Low rank adaptation
• Prompt tuning

12

Low Rank Adaptation
• Deploying independent instances of

downstream fine-tuned models can be
prohibitive (e.g. GPT3, 175B params,
700GB@fp32)
• Instead, freeze the pre-trained model and

inject trainable rank decomposition matrices
into each layer
• Reduce trainable parameters by 10,000x!!
• On-par or better than finetuning on RoBERTa,

DeBERTa, GPT-2 and GPT-3

13E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685

Low Rank Adaptation
• Aghajanyan et al show that pretrained language

models have a low “intrinsic dimension”
• Updates to weight matrices likely have a low

“intrinsic rank” during training
• Found that even very low rank (e.g. r=1 or2) with

GPT-3 175B is effective where full rank
(embedding dimension) is 12,288

14

E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685
A. Aghajanyan et al., “Intrinsic Dimensionality Explains the Effectiveness of Language Model Fine-Tuning”. arXiv:2012.13255 [cs],
December 2020. URL http://arxiv.org/abs/2012.13255.

http://arxiv.org/abs/2106.09685
http://arxiv.org/abs/2012.13255

Reminder: Rank of a Matrix

• The number of linearly independent rows or columns of a matrix

• Determines the dimension of the vector space spanned by the
column vectors

• A measure of “dimensionality”

15

LoRA: Method
Say you have pre-trained weights,

 𝑊! ∈ ℝ"×$

Represent update with a low rank decomposition
 𝑊! + ∆𝑊 = 𝑊! + 𝐵𝐴	,
where 𝐵 ∈ ℝ"×% , 𝐴 ∈ ℝ%×$ and the rank 𝑟	 ≪
min 𝑑, 𝑘 , is much less than the full rank.
For updates,

ℎ = 𝑊! + ∆𝑊 𝑥 = 𝑊!𝑥 + ∆𝑊𝑥 = 𝑊!𝑥 + 𝐵𝐴𝑥
Initialize A to random gaussian and B to zero

16E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685

LoRA: Method
LoRA can be viewed as a generalization of full
finetuning, since using full rank = full finetuning

Updates:
ℎ = 𝑊! + ∆𝑊 𝑥 = 𝑊!𝑥 + ∆𝑊𝑥 = 𝑊!𝑥 + 𝐵𝐴𝑥

Generally only applied to 𝑊& and 𝑊' matrices.

17E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685

LoRA Results / Comparisons

18

GLUE benchmark – measure across 9 language tasks
BitFit – train only the bias vectors
Adpt – Inserts adaptation layer between self-attention and MLP module

E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685
† indicates runs configured in a setup similar to Houlsby et al. (2019) for a fair comparison.

http://arxiv.org/abs/2106.09685

LoRA Results / Comparisons

19

GPT-2 medium (M) and large (L) with different adaptation methods on the E2E NLG
Challenge. For all metrics, higher is better. LoRA outperforms several baselines with
comparable or fewer trainable parameters. Confidence intervals are shown for
experiments we ran. * indicates numbers published in prior works.

E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685

Understanding the Low-Rank Updates

1. Given a parameter budget constraint, which subset of weight
matrices in a pre-trained Transformer should we adapt to maximize
downstream performance?

2. Is the “optimal” adaptation matrix ∆W really rank-deficient? If so,
what is a good rank to use in practice?

20E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685

1) Which weight matrices to target?

21

Validation accuracy on WikiSQL and MultiNLI after applying LoRA to different types of
attention weights in GPT-3, given the same number of trainable parameters. Adapting
both Wq and Wv gives the best performance overall. We find the standard deviation
across random seeds to be consistent for a given dataset, which we report in the first
column.

Rank of 16 on 2 matrices or even 4 on 4 matrices is sufficient.

E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685

2) What is the optimal rank?

22

“Validation accuracy on WikiSQL and MultiNLI with different rank r. To our
surprise, a rank as small as one suffices for adapting both Wq and Wv on
these datasets while training Wq alone needs a larger r.”

E. J. Hu et al., “LoRA: Low-Rank Adaptation of Large Language Models.” arXiv, Oct. 16, 2021. http://arxiv.org/abs/2106.09685

http://arxiv.org/abs/2106.09685

An alternative to adapting model
updates is to train a set of soft
prompt tokens

23

Topics

• Full finetuning
• Low rank adaptation
• Prompt tuning

24

Prompt Tuning

• Prompt engineering can improve LLM performance but is very brittle
• small change in words can have drastic impact on performance
• show example

• Turns out you can learn a set of “soft tokens” that are prepended to
the actual prompt which improves LLM performance
• Makes it much more robust to small changes

25

Prompt Tuning
• P-Tuning: employ trainable continuous prompt embeddings in

concatenation with discrete prompts

26X. Liu et al., “GPT Understands, Too.” arXiv, Oct. 25, 2023. http://arxiv.org/abs/2103.10385

Results are precision@1 on LAMA-TREx P17 with BERT-
base-cased.

Instability of discrete prompts.

http://arxiv.org/abs/2103.10385

Prompt Tuning
• employs trainable continuous prompt embeddings in concatenation

with discrete prompts given a discrete prompt as the input,
• P-Tuning concatenates continuous prompt embeddings with the

discrete prompt tokens and feeds them as the input to the language
model.
• The continuous prompts are updated by backpropagation to optimize

the task objective.

27X. Liu et al., “GPT Understands, Too.” arXiv, Oct. 25, 2023. http://arxiv.org/abs/2103.10385

Incorporate a certain degree of learnability into the input, which may learn to offset
the effects of minor changes in discrete prompts to improve training stability

http://arxiv.org/abs/2103.10385

p-tuning methodology
• Let [D!] be a discrete prompt token.
• Each prompt can be described as a template

 𝑇 = { D":! , x, D !$% :& , y, D(&$%):) }

which could organize the labeled data (including the inputs x and the label y) into a
sequence of text tokens, such that the task could be reformulated as filling in the blanks
of the input text.

• “The capital of [INPUT] is [LABEL].”
• labeled data “(Britain, London)”

• Both discrete prompts and discrete data are together mapped into input embeddings:

 {e 𝐷" …e 𝐷! , e 𝑥" , … , e 𝑥* , … , e 𝐷) }	

through the pretrained embedding layer, where 𝑒 ∈ ℝ 𝒱 ×-.
• we propose P-Tuning that uses continuous prompt embeddings

28X. Liu et al., “GPT Understands, Too.” arXiv, Oct. 25, 2023. http://arxiv.org/abs/2103.10385

http://arxiv.org/abs/2103.10385

p-tuning methodology
• Proposes continuous prompt embeddings
• Let [𝑃!] be the ith continuous prompt

embedding.
• The prompt template for P-Tuning is as

follows:

𝑇 = { P":! , x, P !$% :& , y, P(&$%):) }

• P-Tuning leverages an extra embedding
function 𝑓: P! → ℎ! to map the template to

ℎ", … , ℎ!, 𝑒 𝑥 , ℎ!$%, … , ℎ&, 𝑒 𝑦 , ℎ!$%, … , ℎ)

• Finally, we update the embeddings {𝑃!}!*%) to
optimize a task loss function.

29

LSTM or MLP to model the
dependency between
continuous prompt
embeddings

X. Liu et al., “GPT Understands, Too.” arXiv, Oct. 25, 2023. http://arxiv.org/abs/2103.10385

http://arxiv.org/abs/2103.10385

Discrete Prompt Searching vs P-Tuning

30X. Liu et al., “GPT Understands, Too.” arXiv, Oct. 25, 2023. http://arxiv.org/abs/2103.10385

http://arxiv.org/abs/2103.10385

Additional References

• X. Liu et al., “P-Tuning v2: Prompt Tuning Can Be Comparable to Fine-
tuning Universally Across Scales and Tasks.” arXiv, Mar. 20, 2022.
http://arxiv.org/abs/2110.07602

• B. Lester, R. Al-Rfou, and N. Constant, “The Power of Scale for
Parameter-Efficient Prompt Tuning.” arXiv, Sep. 02, 2021.
http://arxiv.org/abs/2104.08691

31

http://arxiv.org/abs/2110.07602
http://arxiv.org/abs/2104.08691

🤗 HuggingFace PEFT Resources

32

HuggingFace PEFT

• Blog: 🤗 PEFT: Parameter-Efficient Fine-Tuning of Billion-Scale Models
on Low-Resource Hardware

• Library: https://github.com/huggingface/peft

33

https://huggingface.co/blog/peft
https://huggingface.co/blog/peft
https://github.com/huggingface/peft

🤗 HuggingFace PEFT Library

34

Prepare a model for training with PEFT method

Load a PEFT model for inference

https://github.com/huggingface/peft?tab=readme-ov-file#quickstart

Create PEFT config

Get the PEFT model based on config

Get the PEFT model

Use it like a regular model

https://github.com/huggingface/peft?tab=readme-ov-file

🤗 HuggingFace PEFT Library

35

High performance on consumer hardware

Consider the memory requirements for training the following
models on the ought/raft/twitter_complaints dataset with an A100
80GB GPU with more than 64GB of CPU RAM.

Model Full Finetuning PEFT-LoRA PyTorch PEFT-LoRA DeepSpeed with
CPU Offloading

bigscience/T0_3B (3B params) 47.14GB GPU / 2.96GB CPU 14.4GB GPU / 2.96GB CPU 9.8GB GPU / 17.8GB CPU

bigscience/mt0-xxl (12B params) OOM GPU 56GB GPU / 3GB CPU 22GB GPU / 52GB CPU

bigscience/bloomz-7b1 (7B params) OOM GPU 32GB GPU / 3.8GB CPU 18.1GB GPU / 35GB CPU

https://github.com/huggingface/peft?tab=readme-ov-file#high-performance-on-consumer-hardware

Submission Name Accuracy

Human baseline (crowdsourced) 0.897

Flan-T5 (fully finetuned) 0.892

lora-t0-3b (LoRA) 0.863

https://huggingface.co/datasets/ought/raft/viewer/twitter_complaints
https://huggingface.co/bigscience/T0_3B
https://huggingface.co/bigscience/mt0-xxl
https://huggingface.co/bigscience/bloomz-7b1
https://github.com/huggingface/peft?tab=readme-ov-file

🤗 HuggingFace PEFT Library

36

Diffusers

Model Full Finetuning PEFT-LoRA PEFT-LoRA with Gradient
Checkpointing

CompVis/stable-diffusion-v1-4 27.5GB GPU / 3.97GB CPU 15.5GB GPU / 3.84GB CPU 8.12GB GPU / 3.77GB CPU

https://github.com/huggingface/peft?tab=readme-ov-file#diffusers

Take a look at the examples/lora_dreambooth/train_dreambooth.py training script
to try training your own Stable Diffusion model with LoRA, and play around with
the smangrul/peft-lora-sd-dreambooth Space which is running on a T4 instance.
Learn more about the PEFT integration in Diffusers in this tutorial.

https://github.com/huggingface/peft?tab=readme-ov-file
https://github.com/huggingface/peft/blob/main/examples/lora_dreambooth/train_dreambooth.py
https://huggingface.co/spaces/smangrul/peft-lora-sd-dreambooth
https://huggingface.co/docs/peft/main/en/tutorial/peft_integrations

Next Time
• back to book sequence on

• unsupervised learning
• GANs
• VAEs
• Diffusion Models
• graph neural nets
• etc.

37

Feedback

ChatGPT

https://docs.google.com/forms/d/e/1FAIpQLSep8ThqLupjjyf4Uos5ChIuK8P-GrhEW5Im67vNzD8m8iNtMA/viewform

